# Sh:523

- Shelah, S. (1997).
*Existence of almost free abelian groups and reflection of stationary set*. Math. Japon.,**45**(1), 1–14. arXiv: math/9606229 MR: 1434949 -
Abstract:

§2: We answer a question of Mekler Eklof on the closure operations of the incompactness spectrum. We answer a question of Foreman and Magidor on reflection of stationary subsets of {\mathcal S}_{< \aleph_2}(\lambda) = \{ a \subseteq \lambda: |a| < \aleph_2 \}]. §3 - NPT is not transitive. We prove NPT(\lambda,\mu) + NPT(\mu,\kappa) \not\Rightarrow NPT(\lambda,\kappa) - Current version: 1996-06-15_10 (17p)

Bib entry

@article{Sh:523, author = {Shelah, Saharon}, title = {{Existence of almost free abelian groups and reflection of stationary set}}, journal = {Math. Japon.}, fjournal = {Mathematica Japonica}, volume = {45}, number = {1}, year = {1997}, pages = {1--14}, issn = {0025-5513}, mrnumber = {1434949}, mrclass = {03E05 (20K20)}, note = {\href{https://arxiv.org/abs/math/9606229}{arXiv: math/9606229}}, arxiv_number = {math/9606229} }