# Sh:547

- Göbel, R., & Shelah, S. (1998).
*Endomorphism rings of modules whose cardinality is cofinal to omega*. In Abelian groups, module theory, and topology (Padua, 1997), Vol. 201, Dekker, New York, pp. 235–248. arXiv: math/0011186 MR: 1651170 -
Abstract:

The main result is Theorem: Let A be an R-algebra, \mu,\lambda be cardinals such that |A|\leq\mu=\mu^{\aleph_0}<\lambda\leq 2^\mu. If A is \aleph_0-cotorsion-free or A is countably free, respectively, then there exists an \aleph_0-cotorsion-free or a separable (reduced, torsion-free) R-module G respectively of cardinality |G|=\lambda with {\rm End}_R G=A\oplus{\rm Fin} G. - Current version: 2000-10-31_10 (20p)

Bib entry

@incollection{Sh:547, author = {G{\"o}bel, R{\"u}diger and Shelah, Saharon}, title = {{Endomorphism rings of modules whose cardinality is cofinal to omega}}, booktitle = {{Abelian groups, module theory, and topology (Padua, 1997)}}, series = {Lecture Notes in Pure and Appl. Math.}, volume = {201}, year = {1998}, pages = {235--248}, publisher = {Dekker, New York}, mrnumber = {1651170}, mrclass = {13C99 (20K30)}, note = {\href{https://arxiv.org/abs/math/0011186}{arXiv: math/0011186}}, arxiv_number = {math/0011186} }