# Sh:717

- Eklof, P. C., & Shelah, S. (2002).
*The structure of \mathrm{Ext}(A,\mathbb Z) and GCH: possible co-Moore spaces*. Math. Z.,**239**(1), 143–157. arXiv: math/0303344 DOI: 10.1007/s002090100288 MR: 1879333 -
Abstract:

We consider what {\rm Ext}(A,{\mathbb{Z}}) can be when A is torsion-free and {\rm Hom}(A,{\mathbb{Z}})=0. We thereby give an answer to a question of Golasiński and Gonçalves which asks for the divisible Abelian groups which can be the type of a co-Moore space. - published version (15p)

Bib entry

@article{Sh:717, author = {Eklof, Paul C. and Shelah, Saharon}, title = {{The structure of $\mathrm{Ext}(A,\mathbb Z)$ and GCH: possible co-Moore spaces}}, journal = {Math. Z.}, fjournal = {Mathematische Zeitschrift}, volume = {239}, number = {1}, year = {2002}, pages = {143--157}, issn = {0025-5874}, doi = {10.1007/s002090100288}, mrclass = {03E75 (03E35 20K99)}, mrnumber = {1879333}, mrreviewer = {Fred Richman}, doi = {10.1007/s002090100288}, note = {\href{https://arxiv.org/abs/math/0303344}{arXiv: math/0303344}}, arxiv_number = {math/0303344} }