# Sh:541

- Cummings, J., & Shelah, S. (1995).
*Cardinal invariants above the continuum*. Ann. Pure Appl. Logic,**75**(3), 251–268. arXiv: math/9509228 DOI: 10.1016/0168-0072(95)00003-Y MR: 1355135 -
Abstract:

We prove some consistency results about {\bf b}(\lambda) and {\bf d}(\lambda), which are natural generalisations of the cardinal invariants of the continuum {\bf b} and {\bf d}. We also define invariants {\bf b}_{\rm cl}(\lambda) and {\bf d}_{\rm cl}(\lambda), and prove that almost always {\bf b}(\lambda) = {\bf b}_{\rm cl}(\lambda) and {\bf d}(\lambda)={\bf d}_{\rm cl}(\lambda) - published version (18p)

Bib entry

@article{Sh:541, author = {Cummings, James and Shelah, Saharon}, title = {{Cardinal invariants above the continuum}}, journal = {Ann. Pure Appl. Logic}, fjournal = {Annals of Pure and Applied Logic}, volume = {75}, number = {3}, year = {1995}, pages = {251--268}, issn = {0168-0072}, mrnumber = {1355135}, mrclass = {03E35 (03E10)}, doi = {10.1016/0168-0072(95)00003-Y}, note = {\href{https://arxiv.org/abs/math/9509228}{arXiv: math/9509228}}, arxiv_number = {math/9509228} }