# Sh:514

- Magidor, M., & Shelah, S. (1994).
*\mathrm{Bext}^2(G,T) can be nontrivial, even assuming GCH*. In Abelian group theory and related topics (Oberwolfach, 1993), Vol. 171, Amer. Math. Soc., Providence, RI, pp. 287–294. arXiv: math/9405214 DOI: 10.1090/conm/171/01778 MR: 1293148 -
Abstract:

Using the consistency of some large cardinals we produce a model of Set Theory in which the generalized continuum hypothesis holds and for some torsion-free abelian group G of cardinality \aleph_{\omega+1} and for some torsion group T, Bext^2(G,T)\not=0. - published version (8p)

Bib entry

@incollection{Sh:514, author = {Magidor, Menachem and Shelah, Saharon}, title = {{$\mathrm{Bext}^2(G,T)$ can be nontrivial, even assuming GCH}}, booktitle = {{Abelian group theory and related topics (Oberwolfach, 1993)}}, series = {Contemp. Math.}, volume = {171}, year = {1994}, pages = {287--294}, publisher = {Amer. Math. Soc., Providence, RI}, mrnumber = {1293148}, mrclass = {20K40 (03E35 03E55)}, doi = {10.1090/conm/171/01778}, note = {\href{https://arxiv.org/abs/math/9405214}{arXiv: math/9405214}}, arxiv_number = {math/9405214} }