# Sh:756

- Hyttinen, T., & Shelah, S. (2002).
*Forcing a Boolean algebra with predesigned automorphism group*. Proc. Amer. Math. Soc.,**130**(10), 2837–2843. arXiv: math/0102044 DOI: 10.1090/S0002-9939-02-06399-2 MR: 1908905 -
Abstract:

For suitable groups G we will show that one can add a Boolean algebra B by forcing in such a way that Aut(B) is almost isomorphic to G. In particular, we will give a positive answer to the following question due to J. Roitman: Is \aleph_{\omega} a possible number of automorphisms of a rich Boolean algebra? - published version (7p)

Bib entry

@article{Sh:756, author = {Hyttinen, Tapani and Shelah, Saharon}, title = {{Forcing a Boolean algebra with predesigned automorphism group}}, journal = {Proc. Amer. Math. Soc.}, fjournal = {Proceedings of the American Mathematical Society}, volume = {130}, number = {10}, year = {2002}, pages = {2837--2843}, issn = {0002-9939}, doi = {10.1090/S0002-9939-02-06399-2}, mrclass = {06E05 (03E35)}, mrnumber = {1908905}, mrreviewer = {Judith Roitman}, doi = {10.1090/S0002-9939-02-06399-2}, note = {\href{https://arxiv.org/abs/math/0102044}{arXiv: math/0102044}}, arxiv_number = {math/0102044} }