# Sh:1087

- Golshani, M., & Shelah, S. (2018).
*On cuts in ultraproducts of linear orders II*. J. Symb. Log.,**83**(1), 29–39. arXiv: 1604.06044 DOI: 10.1017/jsl.2017.87 MR: 3796271 -
Abstract:

We continue our study of the class \mathcal{C}(D), where D is a uniform ultrafilter on a cardinal \kappa and \mathcal{C}(D) is the class of all pairs (\theta_1, \theta_2), where (\theta_1, \theta_2) is the cofinality of a cut in J^\kappa/D and J is some (\theta_1 + \theta_2)^+-saturated dense linear order. We show that if (\theta_1, \theta_2) \in \mathcal{C} (D) and D is \aleph_1-complete or \theta_1 + \theta_2 > 2^\kappa, then \theta_1 = \theta_2. - published version (11p)

Bib entry

@article{Sh:1087, author = {Golshani, Mohammad and Shelah, Saharon}, title = {{On cuts in ultraproducts of linear orders II}}, journal = {J. Symb. Log.}, fjournal = {The Journal of Symbolic Logic}, volume = {83}, number = {1}, year = {2018}, pages = {29--39}, issn = {0022-4812}, mrnumber = {3796271}, mrclass = {03E04 (03C20 03E35 03E45 03E55)}, doi = {10.1017/jsl.2017.87}, note = {\href{https://arxiv.org/abs/1604.06044}{arXiv: 1604.06044}}, arxiv_number = {1604.06044} }