Sh:1087
- Golshani, M., & Shelah, S. (2018). On cuts in ultraproducts of linear orders II. J. Symb. Log., 83(1), 29–39. arXiv: 1604.06044 DOI: 10.1017/jsl.2017.87 MR: 3796271
-
Abstract:
We continue our study of the class \mathcal{C}(D), where D is a uniform ultrafilter on a cardinal \kappa and \mathcal{C}(D) is the class of all pairs (\theta_1, \theta_2), where (\theta_1, \theta_2) is the cofinality of a cut in J^\kappa/D and J is some (\theta_1 + \theta_2)^+-saturated dense linear order. We show that if (\theta_1, \theta_2) \in \mathcal{C} (D) and D is \aleph_1-complete or \theta_1 + \theta_2 > 2^\kappa, then \theta_1 = \theta_2. - published version (11p)
Bib entry
@article{Sh:1087,
author = {Golshani, Mohammad and Shelah, Saharon},
title = {{On cuts in ultraproducts of linear orders II}},
journal = {J. Symb. Log.},
fjournal = {The Journal of Symbolic Logic},
volume = {83},
number = {1},
year = {2018},
pages = {29--39},
issn = {0022-4812},
mrnumber = {3796271},
mrclass = {03E04 (03C20 03E35 03E45 03E55)},
doi = {10.1017/jsl.2017.87},
note = {\href{https://arxiv.org/abs/1604.06044}{arXiv: 1604.06044}},
arxiv_number = {1604.06044}
}