Sh:385
- Jech, T. J., & Shelah, S. (1991). On a conjecture of Tarski on products of cardinals. Proc. Amer. Math. Soc., 112(4), 1117–1124. arXiv: math/9201247 DOI: 10.2307/2048662 MR: 1070525
-
Abstract:
We look at an old conjecture of A. Tarski on cardinal arithmetic and show that if a counterexample exists, then there exists one of length \omega_1 + \omega. - Version 1994-03-31_10 (8p) published version (8p)
Bib entry
@article{Sh:385, author = {Jech, Thomas J. and Shelah, Saharon}, title = {{On a conjecture of Tarski on products of cardinals}}, journal = {Proc. Amer. Math. Soc.}, fjournal = {Proceedings of the American Mathematical Society}, volume = {112}, number = {4}, year = {1991}, pages = {1117--1124}, issn = {0002-9939}, mrnumber = {1070525}, mrclass = {03E10 (03E35)}, doi = {10.2307/2048662}, note = {\href{https://arxiv.org/abs/math/9201247}{arXiv: math/9201247}}, arxiv_number = {math/9201247} }