Sh:433
- Magidor, M., & Shelah, S. (1998). Length of Boolean algebras and ultraproducts. Math. Japon., 48(2), 301–307. arXiv: math/9805145 MR: 1674385
-
Abstract:
We prove the consistency with ZFC of “the length of an ultraproduct of Boolean algebras is smaller than the ultraproduct of the lengths”. Similarly for some other cardinal invariants of Boolean algebras. - Version 1998-05-01_10 (9p)
Bib entry
@article{Sh:433, author = {Magidor, Menachem and Shelah, Saharon}, title = {{Length of Boolean algebras and ultraproducts}}, journal = {Math. Japon.}, fjournal = {Mathematica Japonica}, volume = {48}, number = {2}, year = {1998}, pages = {301--307}, issn = {0025-5513}, mrnumber = {1674385}, mrclass = {03E35 (03E55 06E05)}, note = {\href{https://arxiv.org/abs/math/9805145}{arXiv: math/9805145}}, arxiv_number = {math/9805145} }