Sh:447
- Kojman, M., & Shelah, S. (1992). The universality spectrum of stable unsuperstable theories. Ann. Pure Appl. Logic, 58(1), 57–72. arXiv: math/9201253 DOI: 10.1016/0168-0072(92)90034-W MR: 1169786
-
Abstract:
It is shown that if T is stable unsuperstable, and \aleph_1< \lambda=cf(\lambda)< 2^{\aleph_0}, or 2^{\aleph_0} < \mu^+< \lambda=cf(\lambda)< \mu^{\aleph_0} then T has no universal model in cardinality \lambda, and if e.g. \aleph_\omega < 2^{\aleph_0} then T has no universal model in \aleph_\omega. These results are generalized to \kappa=cf(\kappa) < \kappa(T) in the place of \aleph_0. Also: if there is a universal model in \lambda>|T|, T stable and \kappa< \kappa(T) then there is a universal tree of height \kappa+1 in cardinality \lambda. - Version 1996-03-19_10 (25p) published version (16p)
Bib entry
@article{Sh:447,
author = {Kojman, Menachem and Shelah, Saharon},
title = {{The universality spectrum of stable unsuperstable theories}},
journal = {Ann. Pure Appl. Logic},
fjournal = {Annals of Pure and Applied Logic},
volume = {58},
number = {1},
year = {1992},
pages = {57--72},
issn = {0168-0072},
mrnumber = {1169786},
mrclass = {03C45 (03C55)},
doi = {10.1016/0168-0072(92)90034-W},
note = {\href{https://arxiv.org/abs/math/9201253}{arXiv: math/9201253}},
arxiv_number = {math/9201253}
}