Sh:472
- Shelah, S. (2001). Categoricity of theories in L_{\kappa^\ast,\omega}, when \kappa^\ast is a measurable cardinal. II. Fund. Math., 170(1-2), 165–196. arXiv: math/9604241 DOI: 10.4064/fm170-1-10 MR: 1881375
-
Abstract:
We continue the work of [KlSh:362] and prove that for \lambdasuccessor, a \lambda-categorical theory T in L_{\kappa^*,\omega} is \mu-categorical for every \mu, \mu\leq\lambda which is above the (2^{LS(T)})^+-beth cardinal. - Version 2001-11-12_11 (28p) published version (32p)
Bib entry
@article{Sh:472,
author = {Shelah, Saharon},
title = {{Categoricity of theories in $L_{\kappa^\ast,\omega}$, when $\kappa^\ast$ is a measurable cardinal. II}},
journal = {Fund. Math.},
fjournal = {Fundamenta Mathematicae},
volume = {170},
number = {1-2},
year = {2001},
pages = {165--196},
issn = {0016-2736},
mrnumber = {1881375},
mrclass = {03C45 (03C35)},
doi = {10.4064/fm170-1-10},
note = {\href{https://arxiv.org/abs/math/9604241}{arXiv: math/9604241}},
dedication = {Dedicated to the memory of Jerzy {\L}o\'s},
arxiv_number = {math/9604241}
}