Sh:509
- Shelah, S. (2008). Vive la différence. III. Israel J. Math., 166, 61–96. arXiv: math/0112237 DOI: 10.1007/s11856-008-1020-3 MR: 2430425
-
Abstract:
We show that, consistently, there is an ultrafilter {\mathcal F} on \omega such that if N^\ell_n=(P^\ell_n\cup Q^\ell_n, P^\ell_n,Q^\ell_n,R^\ell_n) (for \ell=1,2, n<\omega), P^\ell_n \cup Q^\ell_n \subseteq\omega, and \prod\limits_{n<\omega} N^1_n/ {\mathcal F}\equiv\prod\limits_{n<\omega}N^2_n/{\mathcal F} are models of the canonical theory t^{\rm ind} of the strong independence property, then every isomorphism from \prod\limits_{n<\omega} N^1_n/{\mathcal F} onto \prod\limits_{n< \omega} N^2_n/{\mathcal F} is a product isomorphism. - Version 2006-06-19_11 (32p) published version (36p)
Bib entry
@article{Sh:509, author = {Shelah, Saharon}, title = {{Vive la diff\'erence. III}}, journal = {Israel J. Math.}, fjournal = {Israel Journal of Mathematics}, volume = {166}, year = {2008}, pages = {61--96}, issn = {0021-2172}, mrnumber = {2430425}, mrclass = {03C20 (03E35)}, doi = {10.1007/s11856-008-1020-3}, note = {\href{https://arxiv.org/abs/math/0112237}{arXiv: math/0112237}}, arxiv_number = {math/0112237} }