Sh:612
- Juhász, I., & Shelah, S. (1998). On the cardinality and weight spectra of compact spaces. II. Fund. Math., 155(1), 91–94. arXiv: math/9703220 MR: 1487990
-
Abstract:
Let B(\kappa,\lambda) be the subalgebra of {\mathcal P}(\kappa) generated by [\kappa]^{\le\lambda}. It is shown that if B is any homomorphic image of B(\kappa,\lambda) then either |B|< 2^\lambda or |B|=|B|^\lambda, moreover if X is the Stone space of B then either |X|\le 2^{2^\lambda} or |X|=|B|=|B|^\lambda. This implies the existence of 0-dimensional compact T_2 spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality. - Version 1997-03-07_10 (4p) published version (4p)
Bib entry
@article{Sh:612, author = {Juh{\'a}sz, Istv{\'a}n and Shelah, Saharon}, title = {{On the cardinality and weight spectra of compact spaces. II}}, journal = {Fund. Math.}, fjournal = {Fundamenta Mathematicae}, volume = {155}, number = {1}, year = {1998}, pages = {91--94}, issn = {0016-2736}, mrnumber = {1487990}, mrclass = {06E05 (54A25)}, note = {\href{https://arxiv.org/abs/math/9703220}{arXiv: math/9703220}}, arxiv_number = {math/9703220} }