Sh:633
- Goldstern, M., & Shelah, S. (1998). Order polynomially complete lattices must be large. Algebra Universalis, 39(3-4), 197–209. arXiv: math/9707203 DOI: 10.1007/s000120050075 MR: 1636999
-
Abstract:
If L is an order-polynomially complete lattice, then the cardinality of L must be a strongly inaccessible cardinal - Version 1997-07-14_11 (16p) published version (13p)
Bib entry
@article{Sh:633,
author = {Goldstern, Martin and Shelah, Saharon},
title = {{Order polynomially complete lattices must be large}},
journal = {Algebra Universalis},
fjournal = {Algebra Universalis},
volume = {39},
number = {3-4},
year = {1998},
pages = {197--209},
issn = {0002-5240},
mrnumber = {1636999},
mrclass = {06A07 (03E35 03E55 06B05 08A40)},
doi = {10.1007/s000120050075},
note = {\href{https://arxiv.org/abs/math/9707203}{arXiv: math/9707203}},
arxiv_number = {math/9707203}
}