Sh:709
- Kolman, O., & Shelah, S. (2000). Infinitary axiomatizability of slender and cotorsion-free groups. Bull. Belg. Math. Soc. Simon Stevin, 7(4), 623–629. arXiv: math/9910162 http://projecteuclid.org/euclid.bbms/1103055621 MR: 1806941
-
Abstract:
The classes of slender and cotorsion-free abelian groups are axiomatizable in the infinitary logics L_{\infty\omega_1} and L_{\infty\omega} respectively. The Baer-Specker group {\mathbb Z}^\omega is not L_{\infty\omega_1}-equivalent to a slender group. - Version 2000-01-17_10 (7p) published version (7p)
Bib entry
@article{Sh:709, author = {Kolman, Oren and Shelah, Saharon}, title = {{Infinitary axiomatizability of slender and cotorsion-free groups}}, journal = {Bull. Belg. Math. Soc. Simon Stevin}, fjournal = {Bulletin of the Belgian Mathematical Society. Simon Stevin}, volume = {7}, number = {4}, year = {2000}, pages = {623--629}, issn = {1370-1444}, mrnumber = {1806941}, mrclass = {03C75 (20A15 20K20)}, url = {http://projecteuclid.org/euclid.bbms/1103055621}, note = {\href{https://arxiv.org/abs/math/9910162}{arXiv: math/9910162}}, arxiv_number = {math/9910162}, keyword = {infinitary logic, axiomatizability, infinite abelian group, slender, cotorsion-free, Baer-Specker group.} }