Sh:885
- Shelah, S. (2009). A comment on “\mathfrak p<\mathfrak t”. Canad. Math. Bull., 52(2), 303–314. arXiv: math/0404220 DOI: 10.4153/CMB-2009-033-4 MR: 2518968
-
Abstract:
Dealing with the cardinal invariants {\mathfrak p} and {\mathfrak t} of the continuum we prove that {\mathfrak m}\geq {\mathfrak p} = \aleph_2 \Rightarrow {\mathfrak t} = \aleph_1. In other words if {\bf MA}_{\aleph_1} (or a weak version of this) then (of course \aleph_2 \leq {\mathfrak p}\leq {\mathfrak t} and) {\mathfrak p} = \aleph_2 \Rightarrow {\mathfrak p} = {\mathfrak t}. This is based on giving a consequence. - Version 2007-05-10_11 (11p) published version (12p)
Bib entry
@article{Sh:885, author = {Shelah, Saharon}, title = {{A comment on ``$\mathfrak p<\mathfrak t$''}}, journal = {Canad. Math. Bull.}, fjournal = {Canadian Mathematical Bulletin. Bulletin Canadien de Math\'ematiques}, volume = {52}, number = {2}, year = {2009}, pages = {303--314}, issn = {0008-4395}, mrnumber = {2518968}, mrclass = {03E17 (03E05 03E50)}, doi = {10.4153/CMB-2009-033-4}, note = {\href{https://arxiv.org/abs/math/0404220}{arXiv: math/0404220}}, arxiv_number = {math/0404220} }