Sh:885
- Shelah, S. (2009). A comment on “\mathfrak p<\mathfrak t”. Canad. Math. Bull., 52(2), 303–314. arXiv: math/0404220 DOI: 10.4153/CMB-2009-033-4 MR: 2518968
-
Abstract:
Dealing with the cardinal invariants {\mathfrak p} and {\mathfrak t} of the continuum we prove that {\mathfrak m}\geq {\mathfrak p} = \aleph_2 \Rightarrow {\mathfrak t} = \aleph_1. In other words if {\bf MA}_{\aleph_1} (or a weak version of this) then (of course \aleph_2 \leq {\mathfrak p}\leq {\mathfrak t} and) {\mathfrak p} = \aleph_2 \Rightarrow {\mathfrak p} = {\mathfrak t}. This is based on giving a consequence. - Version 2007-05-10_11 (11p) published version (12p)
Bib entry
@article{Sh:885,
author = {Shelah, Saharon},
title = {{A comment on ``$\mathfrak p<\mathfrak t$''}},
journal = {Canad. Math. Bull.},
fjournal = {Canadian Mathematical Bulletin. Bulletin Canadien de Math\'ematiques},
volume = {52},
number = {2},
year = {2009},
pages = {303--314},
issn = {0008-4395},
mrnumber = {2518968},
mrclass = {03E17 (03E05 03E50)},
doi = {10.4153/CMB-2009-033-4},
note = {\href{https://arxiv.org/abs/math/0404220}{arXiv: math/0404220}},
arxiv_number = {math/0404220}
}