Sh:945
- Shelah, S. (2020). On \mathrm{con}(\mathfrak{d}_\lambda>\mathrm{cov}_\lambda(\mathrm{meagre})). Trans. Amer. Math. Soc., 373(8), 5351–5369. arXiv: 0904.0817 DOI: 10.1090/tran/7948 MR: 4127879
-
Abstract:
We prove the consistency of: for suitable strongly inaccessible cardinal \lambda the dominating number, i.e. the cofinaty of {}^\lambda \lambda is strictly bigger than cov(meagre_\lambda), i.e. the minimal number of no-where-dense subsets of {}^\lambda 2 needed to cover it. This answers a question of Matet. - Version 2022-08-12_2 (25p) published version (19p)
Bib entry
@article{Sh:945,
author = {Shelah, Saharon},
title = {{On $\mathrm{con}(\mathfrak{d}_\lambda>\mathrm{cov}_\lambda(\mathrm{meagre}))$}},
journal = {Trans. Amer. Math. Soc.},
fjournal = {Transactions of the American Mathematical Society},
volume = {373},
number = {8},
year = {2020},
pages = {5351--5369},
issn = {0002-9947},
mrnumber = {4127879},
mrclass = {03E35 (03E17 03E55)},
doi = {10.1090/tran/7948},
note = {\href{https://arxiv.org/abs/0904.0817}{arXiv: 0904.0817}},
arxiv_number = {0904.0817}
}