Sh:971
- Khelif, A., & Shelah, S. (2010). Équivalence élémentaire de puissances cartésiennes d’un même groupe. C. R. Math. Acad. Sci. Paris, 348(23-24), 1241–1244. DOI: 10.1016/j.crma.2010.10.034 MR: 2745331
-
Abstract:
We prove that if and are infinite sets and an abelian torsion group the groups and are elementarily equivalent for the logic . The proof is based on a new and simple property with a Cantor-Bernstein flavour. A criterion applying to non commutative groups allows us to exhibit various groups (free or soluble or nilpotent or ...) such that for infinite countable and uncountable the groups and are not even elementarily equivalent for the logic. Another argument leads to a countable commutative group having the same property. - published version (4p)
Bib entry
@article{Sh:971, author = {Khelif, Anatole and Shelah, Saharon}, title = {{\'Equivalence \'el\'ementaire de puissances cart\'esiennes d'un m\^eme groupe}}, journal = {C. R. Math. Acad. Sci. Paris}, fjournal = {Comptes Rendus Math\'ematique. Acad\'emie des Sciences. Paris}, volume = {348}, number = {23-24}, year = {2010}, pages = {1241--1244}, issn = {1631-073X}, mrnumber = {2745331}, mrclass = {20A15 (03B15 03C75 20K99)}, doi = {10.1016/j.crma.2010.10.034} }