Sh:990
- Shelah, S., & Steprāns, J. (2015). Non-trivial automorphisms of \mathcal P(\mathbb N)/[\mathbb N]^{<\aleph_0} from variants of small dominating number. Eur. J. Math., 1(3), 534–544. DOI: 10.1007/s40879-015-0058-0 MR: 3401904
See [Sh:990a] -
Abstract:
It is shown that if various cardinal invariants of the continuum related to \mathfrak d are equal to \aleph_1 then there is a nontrivial automorphism of \mathcal{P}(\mathbb{N})/ [\mathbb{N}]^{<\aleph_0}. Some of these results extend to automorphisms of \mathcal{P}(\kappa)/[\kappa]^{<\kappa} if \kappa is inaccessible - Version 2014-05-15_11 (7p) published version (11p)
Bib entry
@article{Sh:990, author = {Shelah, Saharon and Stepr{\={a}}ns, Juris}, title = {{Non-trivial automorphisms of $\mathcal P(\mathbb N)/[\mathbb N]^{<\aleph_0}$ from variants of small dominating number}}, journal = {Eur. J. Math.}, fjournal = {European Journal of Mathematics}, volume = {1}, number = {3}, year = {2015}, pages = {534--544}, issn = {2199-675X}, mrnumber = {3401904}, mrclass = {03E35 (03E05 03E17 03E50 06E05)}, doi = {10.1007/s40879-015-0058-0}, referred_from_entry = {See [Sh:990a]} }