Sh:996
- Malliaris, M., & Shelah, S. (2015). Constructing regular ultrafilters from a model-theoretic point of view. Trans. Amer. Math. Soc., 367(11), 8139–8173. arXiv: 1204.1481 DOI: 10.1090/S0002-9947-2015-06303-X MR: 3391912
-
Abstract:
This paper, the first of two, contributes to the set-theoretic side of understanding Keisler’s order. We deal with properties of ultrafilters which affect saturation of unstable theories: the lower cofinality {\mathrm{lcf}}(\aleph_0, \mathcal{D}) of \aleph_0 modulo \mathcal{D}, saturation of the minimum unstable theory (the random graph), flexibility, goodness, goodness for equality, and realization of symmetric cuts. We work in ZFC except when noted, as several constructions appeal to complete ultrafilters thus assume a measurable cardinal. The main results are as follows. First, we investigate the strength of flexibility, known to be detected by non-low theories. Assuming \kappa > \aleph_0 is measurable, we construct a regular ultrafilter on \lambda \geq 2^\kappa which is flexible (thus: ok) but not good, and which moreover has large {\mathrm{lcf}} (\aleph_0) but does not even saturate models of the random graph. This implies (a) that flexibility alone cannot characterize saturation of any theory, however (b) by separating flexibility from goodness, we remove a main obstacle to proving non-low does not imply maximal, and (c) from a set-theoretic point of view, consistently, ok need not imply good, answering a question from Dow 1985. Under no additional assumptions, we prove that there is a loss of saturation in regular ultrapowers of unstable theories, and give a new proof that there is a loss of saturation in ultrapowers of non-simple theories. More precisely, for \mathcal{D} regular on \kappa and M a model of an unstable theory, M^\kappa/ \mathcal{D} is not (2^\kappa)^+-saturated; and for M a model of a non-simple theory and \lambda = \lambda^{<\lambda}, M^\lambda/\mathcal{D} is not \lambda^{++}-saturated. Finally, we investigate realization and omission of symmetric cuts, significant both because of the maximality of the strict order property in Keisler’s order, and by recent work of the authors on SOP_2. We prove that if \mathcal{D} is a \kappa- complete ultrafilter on \kappa, any ultrapower of a sufficiently saturated model of linear order will have no (\kappa, \kappa)-cuts, and that if \mathcal{D} is also normal, it will have a (\kappa^+, \kappa^+)-cut. We apply this to prove that for any n < \omega, assuming the existence of n measurable cardinals below \lambda, there is a regular ultrafilter D on \lambda such that any D-ultrapower of a model of linear order will have n alternations of cuts, as defined below. Moreover, D will \lambda^+-saturate all stable theories but will not (2^{\kappa})^+-saturate any unstable theory, where \kappa is the smallest measurable cardinal used in the construction. - Version 2013-09-10_11 (31p) published version (35p)
Bib entry
@article{Sh:996, author = {Malliaris, Maryanthe and Shelah, Saharon}, title = {{Constructing regular ultrafilters from a model-theoretic point of view}}, journal = {Trans. Amer. Math. Soc.}, fjournal = {Transactions of the American Mathematical Society}, volume = {367}, number = {11}, year = {2015}, pages = {8139--8173}, issn = {0002-9947}, mrnumber = {3391912}, mrclass = {03C20 (03C45 03E05)}, doi = {10.1090/S0002-9947-2015-06303-X}, note = {\href{https://arxiv.org/abs/1204.1481}{arXiv: 1204.1481}}, arxiv_number = {1204.1481} }