Publications with Y. Gurevich
All publications by Yuri Gurevich and S. Shelah
Click the Sh:-number to get to the papers' detail page (which may include pdf's of the paper).
Can't find an Sh:-number (in particular, an "F-number")? You can try your luck here.
number | title |
---|---|
Sh:70 | Gurevich, Y., & Shelah, S. (1979). Modest theory of short chains. II. J. Symbolic Logic, 44(4), 491–502. DOI: 10.2307/2273288 MR: 550378 |
Sh:123 | Gurevich, Y., & Shelah, S. (1982). Monadic theory of order and topology in ZFC. Ann. Math. Logic, 23(2-3), 179–198 (1983). DOI: 10.1016/0003-4843(82)90004-3 MR: 701125 |
Sh:135 | Glass, A. M. W., Gurevich, Y., Holland, W. C., & Shelah, S. (1981). Rigid homogeneous chains. Math. Proc. Cambridge Philos. Soc., 89(1), 7–17. DOI: 10.1017/S0305004100057881 MR: 591966 |
Sh:141 | Gurevich, Y., Magidor, M., & Shelah, S. (1983). The monadic theory of \omega_2. J. Symbolic Logic, 48(2), 387–398. DOI: 10.2307/2273556 MR: 704093 |
Sh:143 | Gurevich, Y., & Shelah, S. (1984). The monadic theory and the “next world”. Israel J. Math., 49(1-3), 55–68. DOI: 10.1007/BF02760646 MR: 788265 |
Sh:151 | Gurevich, Y., & Shelah, S. (1983). Interpreting second-order logic in the monadic theory of order. J. Symbolic Logic, 48(3), 816–828. DOI: 10.2307/2273475 MR: 716644 |
Sh:163 | Gurevich, Y., & Shelah, S. (1985). To the decision problem for branching time logic. In Foundations of logic and linguistics (Salzburg, 1983), Plenum, New York, pp. 181–198. MR: 797952 |
Sh:168 | Gurevich, Y., & Shelah, S. (1989). On the strength of the interpretation method. J. Symbolic Logic, 54(2), 305–323. DOI: 10.2307/2274850 MR: 997869 |
Sh:178 | Gurevich, Y., & Shelah, S. (1983). Random models and the Gödel case of the decision problem. J. Symbolic Logic, 48(4), 1120–1124 (1984). DOI: 10.2307/2273674 MR: 727799 |
Sh:183 | Gurevich, Y., & Shelah, S. (1983). Rabin’s uniformization problem. J. Symbolic Logic, 48(4), 1105–1119 (1984). DOI: 10.2307/2273673 MR: 727798 |
Sh:184 | Goldfarb, W. D., Gurevich, Y., & Shelah, S. (1984). A decidable subclass of the minimal Gödel class with identity. J. Symbolic Logic, 49(4), 1253–1261. DOI: 10.2307/2274275 MR: 771791 |
Sh:213 | Denenberg, L., Gurevich, Y., & Shelah, S. (1986). Definability by constant-depth polynomial-size circuits. Inform. And Control, 70(2-3), 216–240. DOI: 10.1016/S0019-9958(86)80006-7 MR: 859107 |
Sh:230 | Gurevich, Y., & Shelah, S. (1985). The decision problem for branching time logic. J. Symbolic Logic, 50(3), 668–681. DOI: 10.2307/2274321 MR: 805676 |
Sh:243 | Gurevich, Y., & Shelah, S. (1987). Expected computation time for Hamiltonian path problem. SIAM J. Comput., 16(3), 486–502. DOI: 10.1137/0216034 MR: 889404 |
Sh:244 | Gurevich, Y., & Shelah, S. (1985). Fixed-point extensions of first-order logic. In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), IEEE Computer Science Society Press, pp. 346–353. DOI: 10.1109/SFCF.1985.27 Conference proceedings version of [Sh:244a] |
Sh:244a | Gurevich, Y., & Shelah, S. (1986). Fixed-point extensions of first-order logic. Ann. Pure Appl. Logic, 32(3), 265–280. DOI: 10.1016/0168-0072(86)90055-2 MR: 865992 See [Sh:244] |
Sh:277 | Gurevich, Y., & Shelah, S. (1989). Nearly linear time. In Logic at Botik ’89 (Pereslavl-Zalesskiy, 1989), Vol. 363, Springer, Berlin, pp. 108–118. DOI: 10.1007/3-540-51237-3_10 MR: 1030571 |
Sh:332 | Gurevich, Y., & Shelah, S. (1988). Nondeterministic Linear Tasks May Require Substantially Nonlinear Deterministic Time in the Case of Sublinear Work Space. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, New York, NY, USA: ACM, pp. 281–289. DOI: 10.1145/62212.62239 |
Sh:332a | Gurevich, Y., & Shelah, S. (1990). Nondeterministic linear-time tasks may require substantially nonlinear deterministic time in the case of sublinear work space. J. Assoc. Comput. Mach., 37(3), 674–687. DOI: 10.1145/79147.214070 MR: 1072274 |
Sh:343 | Gurevich, Y., & Shelah, S. (1989). Time polynomial in input or output. J. Symbolic Logic, 54(3), 1083–1088. DOI: 10.2307/2274767 MR: 1011194 |
Sh:525 | Gurevich, Y., Immerman, N., & Shelah, S. (1994). McColm’s conjecture [positive elementary inductions]. In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, pp. 10–19. arXiv: math/9411235 DOI: 10.1109/LICS.1994.316091 |
Sh:526 | Gurevich, Y., & Shelah, S. (1996). On finite rigid structures. J. Symbolic Logic, 61(2), 549–562. arXiv: math/9411236 DOI: 10.2307/2275675 MR: 1394614 |
Sh:533 | Blass, A. R., Gurevich, Y., & Shelah, S. (1999). Choiceless polynomial time. Ann. Pure Appl. Logic, 100(1-3), 141–187. arXiv: math/9705225 DOI: 10.1016/S0168-0072(99)00005-6 MR: 1711992 See [Sh:533a] |
Sh:533a | Blass, A. R., Gurevich, Y., & Shelah, S. (2001). Addendum to: “Choiceless polynomial time” [Ann. Pure Appl. Logic 100 (1999), no. 1-3, 141–187;MR1711992 (2001a:68036)]. Ann. Pure Appl. Logic, 112(1), 117. DOI: 10.1016/S0168-0072(01)00086-0 MR: 1854233 Correction of [Sh:533] |
Sh:536 | Gurevich, Y., & Shelah, S. (2003). Spectra of Monadic Second-Order Formulas with One Unary Function. In 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings., pp. 291–300. arXiv: math/0404150 DOI: 10.1109/LICS.2003.1210069 |
Sh:760 | Blass, A. R., Gurevich, Y., & Shelah, S. (2002). On polynomial time computation over unordered structures. J. Symbolic Logic, 67(3), 1093–1125. arXiv: math/0102059 DOI: 10.2178/jsl/1190150152 MR: 1926601 |