Sh:1071
- Shelah, S., & Steprāns, J. (2016). When automorphisms of \mathcal P(\kappa)/[\kappa]^{<\aleph_0} are trivial off a small set. Fund. Math., 235(2), 167–182. DOI: 10.4064/fm222-2-2016 MR: 3549381
-
Abstract:
It is shown that if \kappa > 2^{\aleph_0} and \kappa is less than the first inaccessible cardinal then every automorphism of \mathcal{P} (\kappa)/[\kappa]^{<\aleph_0} is trivial outside of a set of cardinality 2^{\aleph_0}. - Version 2016-02-22_11 (11p) published version (16p)
Bib entry
@article{Sh:1071, author = {Shelah, Saharon and Stepr{\={a}}ns, Juris}, title = {{When automorphisms of $\mathcal P(\kappa)/[\kappa]^{<\aleph_0}$ are trivial off a small set}}, journal = {Fund. Math.}, fjournal = {Fundamenta Mathematicae}, volume = {235}, number = {2}, year = {2016}, pages = {167--182}, issn = {0016-2736}, mrnumber = {3549381}, mrclass = {03E05 (03E20)}, doi = {10.4064/fm222-2-2016} }