Sh:1071
- Shelah, S., & Steprāns, J. (2016). When automorphisms of \mathcal P(\kappa)/[\kappa]^{<\aleph_0} are trivial off a small set. Fund. Math., 235(2), 167–182. DOI: 10.4064/fm222-2-2016 MR: 3549381
-
Abstract:
It is shown that if \kappa > 2^{\aleph_0} and \kappa is less than the first inaccessible cardinal then every automorphism of \mathcal{P} (\kappa)/[\kappa]^{<\aleph_0} is trivial outside of a set of cardinality 2^{\aleph_0}. - Version 2016-02-22_11 (11p) published version (16p)
Bib entry
@article{Sh:1071,
author = {Shelah, Saharon and Stepr{\={a}}ns, Juris},
title = {{When automorphisms of $\mathcal P(\kappa)/[\kappa]^{<\aleph_0}$ are trivial off a small set}},
journal = {Fund. Math.},
fjournal = {Fundamenta Mathematicae},
volume = {235},
number = {2},
year = {2016},
pages = {167--182},
issn = {0016-2736},
mrnumber = {3549381},
mrclass = {03E05 (03E20)},
doi = {10.4064/fm222-2-2016}
}