Sh:1080
- Komjáth, P., & Shelah, S. (2017). Consistently \mathcal P(\omega_1) is the union of less than 2^{\aleph_1} strongly independent families. Israel J. Math., 218(1), 165–173. DOI: 10.1007/s11856-017-1463-5 MR: 3625129
-
Abstract:
It is consistent that \mathcal{P}(\omega_1) is the union of less than 2^{\aleph_1} parts such that if A_0,\dots,A_{n-1},B_0,\dots,B_{m-1} are distinct elements of the same part then |A_0\cap\cdots \cap A_{n-1}\cap (\omega_1-B_0)\cap\cdots \cap(\omega_1-B_{m-1})|=\aleph_1. - published version (9p)
Bib entry
@article{Sh:1080,
author = {Komj{\'a}th, P{\'e}ter and Shelah, Saharon},
title = {{Consistently $\mathcal P(\omega_1)$ is the union of less than $2^{\aleph_1}$ strongly independent families}},
journal = {Israel J. Math.},
fjournal = {Israel Journal of Mathematics},
volume = {218},
number = {1},
year = {2017},
pages = {165--173},
issn = {0021-2172},
mrnumber = {3625129},
mrclass = {03E35 (03E55)},
doi = {10.1007/s11856-017-1463-5}
}