Sh:1198
- Golshani, M., & Shelah, S. (2023). On slow minimal reals I. Proc. Amer. Math. Soc., 151(10), 4527–4536. arXiv: 2010.10812 DOI: 10.1090/proc/16397 MR: 4643336
-
Abstract:
Answering a question of Harrington, we show that there exists a proper forcing notion, which adds a minimal real \eta \in \prod_{i<\omega} n^*_i, which is eventually different from any old real in \prod_{i<\omega} n^*_i, where the sequence \langle n^*_i \mid i<\omega \rangle grows slowly. - published version (10p)
Bib entry
@article{Sh:1198, author = {Golshani, Mohammad and Shelah, Saharon}, title = {{On slow minimal reals I}}, journal = {Proc. Amer. Math. Soc.}, fjournal = {Proceedings of the American Mathematical Society}, volume = {151}, number = {10}, year = {2023}, pages = {4527--4536}, issn = {0002-9939}, mrnumber = {4643336}, mrclass = {03E35}, doi = {10.1090/proc/16397}, note = {\href{https://arxiv.org/abs/2010.10812}{arXiv: 2010.10812}}, arxiv_number = {2010.10812} }