Sh:437
- Burke, M. R., & Shelah, S. (1992). Linear liftings for noncomplete probability spaces. Israel J. Math., 79(2-3), 289–296. arXiv: math/9201252 DOI: 10.1007/BF02808221 MR: 1248919
-
Abstract:
We show that it is consistent with ZFC that L^\infty(Y,{\mathcal B},\nu) has no linear lifting for many non-complete probability spaces (Y,{\mathcal B},\nu), in particular for Y=[0,1]^A, {\mathcal B}= Borel subsets of Y, \nu= usual Radon measure on {\mathcal B}. - Version 1995-11-22_10 (8p) published version (8p)
Bib entry
@article{Sh:437,
author = {Burke, Maxim R. and Shelah, Saharon},
title = {{Linear liftings for noncomplete probability spaces}},
journal = {Israel J. Math.},
fjournal = {Israel Journal of Mathematics},
volume = {79},
number = {2-3},
year = {1992},
pages = {289--296},
issn = {0021-2172},
mrnumber = {1248919},
mrclass = {03E35 (03E75 28A51 46G15)},
doi = {10.1007/BF02808221},
note = {\href{https://arxiv.org/abs/math/9201252}{arXiv: math/9201252}},
arxiv_number = {math/9201252}
}