Sh:440
- Comfort, W. W., Kato, A., & Shelah, S. (1993). Topological partition relations of the form \omega^\ast\to(Y)^1_2. In Papers on general topology and applications (Madison, WI, 1991), Vol. 704, New York Acad. Sci., New York, pp. 70–79. arXiv: math/9305206 DOI: 10.1111/j.1749-6632.1993.tb52510.x MR: 1277844
-
Abstract:
Theorem: The topological partition relation \omega^{*}\rightarrow(Y)^{1}_{2}(a) fails for every space Y with |Y|\geq 2^{\rm \bf c};
(b) holds for Y discrete if and only if |Y|\leq c;
(c) holds for certain non-discrete P-spaces Y;
(d) fails for Y=\omega\cup\{p\} with p\in\omega^{*};
(e) fails for Y infinite and countably compact.
- Version 1993-08-29_10 (15p) published version (10p)
Bib entry
@incollection{Sh:440,
author = {Comfort, William Wistar and Kato, Akio and Shelah, Saharon},
title = {{Topological partition relations of the form $\omega^\ast\to(Y)^1_2$}},
booktitle = {{Papers on general topology and applications (Madison, WI, 1991)}},
series = {Ann. New York Acad. Sci.},
volume = {704},
year = {1993},
pages = {70--79},
publisher = {New York Acad. Sci., New York},
mrnumber = {1277844},
mrclass = {54B05 (04A20 54A20 54D40 54G10)},
doi = {10.1111/j.1749-6632.1993.tb52510.x},
note = {\href{https://arxiv.org/abs/math/9305206}{arXiv: math/9305206}},
arxiv_number = {math/9305206}
}