Sh:547
- Göbel, R., & Shelah, S. (1998). Endomorphism rings of modules whose cardinality is cofinal to omega. In Abelian groups, module theory, and topology (Padua, 1997), Vol. 201, Dekker, New York, pp. 235–248. arXiv: math/0011186 MR: 1651170
-
Abstract:
The main result is Theorem: Let A be an R-algebra, \mu,\lambda be cardinals such that |A|\leq\mu=\mu^{\aleph_0}<\lambda\leq 2^\mu. If A is \aleph_0-cotorsion-free or A is countably free, respectively, then there exists an \aleph_0-cotorsion-free or a separable (reduced, torsion-free) R-module G respectively of cardinality |G|=\lambda with {\rm End}_R G=A\oplus{\rm Fin} G. - Version 2000-10-31_11 (20p) published version (14p)
Bib entry
@incollection{Sh:547,
author = {G{\"o}bel, R{\"u}diger and Shelah, Saharon},
title = {{Endomorphism rings of modules whose cardinality is cofinal to omega}},
booktitle = {{Abelian groups, module theory, and topology (Padua, 1997)}},
series = {Lecture Notes in Pure and Appl. Math.},
volume = {201},
year = {1998},
pages = {235--248},
publisher = {Dekker, New York},
mrnumber = {1651170},
mrclass = {13C99 (20K30)},
note = {\href{https://arxiv.org/abs/math/0011186}{arXiv: math/0011186}},
arxiv_number = {math/0011186}
}