Sh:585
- Rabus, M., & Shelah, S. (2000). Covering a function on the plane by two continuous functions on an uncountable square—the consistency. Ann. Pure Appl. Logic, 103(1-3), 229–240. arXiv: math/9706223 DOI: 10.1016/S0168-0072(98)00053-0 MR: 1756147
-
Abstract:
It is consistent that for every function f:{\mathbb R}\times {\mathbb R}\rightarrow {\mathbb R} there is an uncountable set A\subseteq {\mathbb R} and two continuous functions f_0,f_1:D(A)\rightarrow {\mathbb R} such that f(\alpha,\beta)\in \{f_0(\alpha,\beta),f_1(\alpha,\beta)\} for every (\alpha,\beta) \in A^2, \alpha\not =\beta. - Version 1997-06-04_10 (10p) published version (12p)
Bib entry
@article{Sh:585,
author = {Rabus, Mariusz and Shelah, Saharon},
title = {{Covering a function on the plane by two continuous functions on an uncountable square---the consistency}},
journal = {Ann. Pure Appl. Logic},
fjournal = {Annals of Pure and Applied Logic},
volume = {103},
number = {1-3},
year = {2000},
pages = {229--240},
issn = {0168-0072},
mrnumber = {1756147},
mrclass = {03E35 (26B05)},
doi = {10.1016/S0168-0072(98)00053-0},
note = {\href{https://arxiv.org/abs/math/9706223}{arXiv: math/9706223}},
arxiv_number = {math/9706223}
}