Sh:607
- Bartoszyński, T., & Shelah, S. (2001). Strongly meager sets do not form an ideal. J. Math. Log., 1(1), 1–34. arXiv: math/9805148 DOI: 10.1142/S0219061301000028 MR: 1838340
-
Abstract:
A set X \subseteq {\bf R} is strongly meager if for every measure zero set H, X+H \neq {\bf R}. Let SM denote the collection of strongly meager sets. We show that assuming CH, SM is not an ideal. - Version 1998-05-13_11 (29p) published version (34p)
Bib entry
@article{Sh:607,
author = {Bartoszy{\'n}ski, Tomek and Shelah, Saharon},
title = {{Strongly meager sets do not form an ideal}},
journal = {J. Math. Log.},
fjournal = {Journal of Mathematical Logic},
volume = {1},
number = {1},
year = {2001},
pages = {1--34},
issn = {0219-0613},
mrnumber = {1838340},
mrclass = {03E17 (03E50)},
doi = {10.1142/S0219061301000028},
note = {\href{https://arxiv.org/abs/math/9805148}{arXiv: math/9805148}},
arxiv_number = {math/9805148}
}