Sh:629
- Hyttinen, T., & Shelah, S. (2000). Strong splitting in stable homogeneous models. Ann. Pure Appl. Logic, 103(1-3), 201–228. arXiv: math/9911229 DOI: 10.1016/S0168-0072(99)00044-5 MR: 1756146
-
Abstract:
In this paper we study elementary submodels of a stable homogeneous structure. We improve the independence relation defined in [Hy1]. We apply this to prove a structure theorem. We also solve a question from [Hy3]: We show that dop and sdop are essentially equivalent, where the negation of dop is a property used to get structure theorems and sdop implies nonstructure. - Version 1998-11-24_10 (28p) published version (28p)
Bib entry
@article{Sh:629, author = {Hyttinen, Tapani and Shelah, Saharon}, title = {{Strong splitting in stable homogeneous models}}, journal = {Ann. Pure Appl. Logic}, fjournal = {Annals of Pure and Applied Logic}, volume = {103}, number = {1-3}, year = {2000}, pages = {201--228}, issn = {0168-0072}, mrnumber = {1756146}, mrclass = {03C45 (03C50 03C52)}, doi = {10.1016/S0168-0072(99)00044-5}, note = {\href{https://arxiv.org/abs/math/9911229}{arXiv: math/9911229}}, arxiv_number = {math/9911229} }