Sh:754
- Shelah, S., & Strüngmann, L. H. (2003). It is consistent with ZFC that -groups are not . Forum Math., 15(4), 507–524. arXiv: math/0012172 DOI: 10.1515/form.2003.028 MR: 1978332
-
Abstract:
A torsion-free abelian group of arbitrary rank is called a -group if for every torsion abelian group , where denotes the group of equivalence classes of all balanced exact extensions of by . It is a long-standing problem whether or not the class of -groups coincides with the class of -groups. A torsion-free abelian group is called a -group if there exists a continuous well-ordered ascending chain of pure subgroups, such that for every for some finite rank Butler group Both, -groups and -groups are natural generalizations of finite rank Butler groups to the infinite rank case and it is known that every -group is a -group. Moreover, assuming it was proven that the two classes coincide. Here we demonstrate that it is undecidable in ZFC whether or not all -groups are -groups. Using Cohen forcing we prove that there is a model of ZFC in which there exists a -group that is not a -group. - Version 2001-10-30_11 (19p) published version (18p)
Bib entry
@article{Sh:754, author = {Shelah, Saharon and Str{\"u}ngmann, Lutz H.}, title = {{It is consistent with ZFC that $B_1$-groups are not $B_2$}}, journal = {Forum Math.}, fjournal = {Forum Mathematicum}, volume = {15}, number = {4}, year = {2003}, pages = {507--524}, issn = {0933-7741}, mrnumber = {1978332}, mrclass = {20K20 (03E35 20A15 20K15)}, doi = {10.1515/form.2003.028}, note = {\href{https://arxiv.org/abs/math/0012172}{arXiv: math/0012172}}, arxiv_number = {math/0012172} }