Sh:784
- Shelah, S. (2004). Forcing axiom failure for any \lambda>\aleph_1. Arch. Math. Logic, 43(3), 285–295. arXiv: math/0112286 DOI: 10.1007/s00153-003-0208-9 MR: 2052883
-
Abstract:
David Aspero asks on the possibility of having Forcing axiom FA_{{\aleph_2}}(\mathfrak{K}), where \mathfrak{K} is the class of forcing notions preserving stationarily of subsets of \aleph_1 and of \aleph_2. We answer negatively, in fact we show the negative result for any regular \lambda>\aleph_1 even demanding adding no new sequence of ordinals of length <\lambda. - Version 2004-03-01_10 (16p) published version (11p)
Bib entry
@article{Sh:784, author = {Shelah, Saharon}, title = {{Forcing axiom failure for any $\lambda>\aleph_1$}}, journal = {Arch. Math. Logic}, fjournal = {Archive for Mathematical Logic}, volume = {43}, number = {3}, year = {2004}, pages = {285--295}, issn = {0933-5846}, mrnumber = {2052883}, mrclass = {03E40 (03E65)}, doi = {10.1007/s00153-003-0208-9}, note = {\href{https://arxiv.org/abs/math/0112286}{arXiv: math/0112286}}, arxiv_number = {math/0112286} }