Sh:791
- Shelah, S., & Zapletal, J. (2002). Duality and the PCF theory. Math. Res. Lett., 9(5-6), 585–595. arXiv: math/0212041 DOI: 10.4310/MRL.2002.v9.n5.a2 MR: 1906062
-
Abstract:
We consider natural cardinal invariants {\mathfrak hm}_n and prove several duality theorems, saying roughly: if I is a suitably definable ideal and provably {\rm cov}(I)\geq{\mathfrak hm}_n, then {\rm non}(I) is provably small. The proofs integrate the determinacy theory, forcing and pcf theory. - Version 2002-10-02_11 (11p) published version (11p)
Bib entry
@article{Sh:791,
author = {Shelah, Saharon and Zapletal, Jind{\v{r}}ich},
title = {{Duality and the PCF theory}},
journal = {Math. Res. Lett.},
fjournal = {Mathematical Research Letters},
volume = {9},
number = {5-6},
year = {2002},
pages = {585--595},
issn = {1073-2780},
mrnumber = {1906062},
mrclass = {03E17 (03E04)},
doi = {10.4310/MRL.2002.v9.n5.a2},
note = {\href{https://arxiv.org/abs/math/0212041}{arXiv: math/0212041}},
arxiv_number = {math/0212041}
}