Sh:804
- Matet, P., & Shelah, S. Positive partition relations for P_\kappa(\lambda). Preprint. arXiv: math/0407440
-
Abstract:
Let \kappa a regular uncountable cardinal and \lambda a cardinal >\kappa, and suppose \lambda^{<\kappa} is less than the covering number for category {\rm cov}({\mathcal M}_{\kappa, \kappa}). Then(a) I_{\kappa,\lambda}^+\mathop{\longrightarrow}\limits^\kappa (I_{\kappa,\lambda}^+,\omega+1)^2,
(b) I_{\kappa,\lambda}^+\mathop{\longrightarrow}\limits^\kappa [I_{\kappa,\lambda}^+]_{\kappa^+}^2 if \kappa is a limit cardinal, and
(c) I_{\kappa,\lambda}^+ \mathop{\longrightarrow}\limits^\kappa (I_{\kappa,\lambda}^+)^2 if \kappa is weakly compact.
- Version 2004-07-06_10 (26p)
Bib entry
@article{Sh:804, author = {Matet, Pierre and Shelah, Saharon}, title = {{Positive partition relations for $P_\kappa(\lambda)$}}, note = {\href{https://arxiv.org/abs/math/0407440}{arXiv: math/0407440}}, arxiv_number = {math/0407440} }