Sh:826
- Bartoszyński, T., & Shelah, S. (2008). On the density of Hausdorff ultrafilters. In Logic Colloquium 2004, Vol. 29, Assoc. Symbol. Logic, Chicago, IL, pp. 18–32. arXiv: math/0311064 MR: 2401857
-
Abstract:
An ultrafilter U is Hausdorff if for any two functions f,g \in \omega^\omega, f(U)=g(U) iff f \restriction X=g\restriction X for some X \in U. We will show that the statement that Hausdorff ultrafilters are dense in the Rudin-Keisler order is independent of ZFC - Version 2006-07-13_11 (12p) published version (15p)
Bib entry
@incollection{Sh:826, author = {Bartoszy{\'n}ski, Tomek and Shelah, Saharon}, title = {{On the density of Hausdorff ultrafilters}}, booktitle = {{Logic Colloquium 2004}}, series = {Lect. Notes Log.}, volume = {29}, year = {2008}, pages = {18--32}, publisher = {Assoc. Symbol. Logic, Chicago, IL}, mrnumber = {2401857}, mrclass = {03E05 (03E35 54A25)}, note = {\href{https://arxiv.org/abs/math/0311064}{arXiv: math/0311064}}, arxiv_number = {math/0311064} }