Sh:877
- Shelah, S. (2014). Dependent T and existence of limit models. Tbilisi Math. J., 7(1), 99–128. arXiv: math/0609636 DOI: 10.2478/tmj-2014-0010 MR: 3313049
- 
        Abstract:
        
 We continue [Sh:868] and [Sh:783]. The problem there is when does (first order) T have a model M of cardinality \lambda which is (one of the variants of) a limit model for cofinality \kappa, and the most natural case to try is \lambda=\lambda^{< \lambda}>\kappa={\rm cf}(\kappa)>|T|. The stable theories has one; are there unstable T whnce of limit models AUTHORS: Saharon Shelah ich has such limit models? We find one: the theory T_{\rm ord} of dense linear orders. So does this hold for all unstable T? As T_{\rm ord} is prototypical of dependent theories, it is natural to look for independent theories. A strong, explicit version of T being independent is having the strong independence property. We prove that for such T there are no limit models. We work harder to prove this for every dependent T, i.e., with the independence property though a weaker version. This makes us conjecture that any dependent T has such models. Toward this end we continue the investigation of types for dependent T.
- Version 2015-06-02_12 (28p) published version (30p)
    Bib entry  
  @article{Sh:877,
 author = {Shelah, Saharon},
 title = {{Dependent $T$ and existence of limit models}},
 journal = {Tbilisi Math. J.},
 fjournal = {Tbilisi Mathematical Journal},
 volume = {7},
 number = {1},
 year = {2014},
 pages = {99--128},
 issn = {1875-158X},
 mrnumber = {3313049},
 mrclass = {03C45 (03C50 03C55 06A05)},
 doi = {10.2478/tmj-2014-0010},
 note = {\href{https://arxiv.org/abs/math/0609636}{arXiv: math/0609636}},
 arxiv_number = {math/0609636}
}