Sh:377
- Shelah, S., Tuuri, H., & Väänänen, J. A. (1993). On the number of automorphisms of uncountable models. J. Symbolic Logic, 58(4), 1402–1418. arXiv: math/9301205 DOI: 10.2307/2275150 MR: 1253929
-
Abstract:
Let s({\mathcal A}) denote the number of automorphisms of a model {\mathcal A} of power \omega_1. We derive a necessary and sufficient condition in terms of trees for the existence of an {\mathcal A} with \omega_1 < s({\mathcal A}) < 2^{\omega_1}. We study the sufficiency of some conditions for s({\mathcal A})=2^{\omega_1}. These conditions are analogous to conditions studied by D.Kueker in connection with countable models. - Version 1995-11-25_10 (20p) published version (18p)
Bib entry
@article{Sh:377, author = {Shelah, Saharon and Tuuri, Heikki and V{\"a}{\"a}n{\"a}nen, Jouko A.}, title = {{On the number of automorphisms of uncountable models}}, journal = {J. Symbolic Logic}, fjournal = {The Journal of Symbolic Logic}, volume = {58}, number = {4}, year = {1993}, pages = {1402--1418}, issn = {0022-4812}, mrnumber = {1253929}, mrclass = {03C50}, doi = {10.2307/2275150}, note = {\href{https://arxiv.org/abs/math/9301205}{arXiv: math/9301205}}, arxiv_number = {math/9301205} }