Sh:424
- Shelah, S. (1993). On CH + 2^{\aleph_1}\to(\alpha)^2_2 for \alpha<\omega_2. In Logic Colloquium β90 (Helsinki, 1990), Vol. 2, Springer, Berlin, pp. 281β289. arXiv: math/9308212 MR: 1279847
-
Abstract:
We prove the consistency of βCH + 2^{\aleph_1} is arbitrarily large + 2^{\aleph_1}\not\rightarrow(\omega_1\times\omega)^2_2β. If fact, we can get 2^{\aleph_1}\not\rightarrow[\omega_1\times\omega]^2_{\aleph_0}. In addition to this theorem, we give generalizations to other cardinals. - Version 1993-08-29_10 (9p) published version (9p)
Bib entry
@incollection{Sh:424, author = {Shelah, Saharon}, title = {{On CH + $2^{\aleph_1}\to(\alpha)^2_2$ for $\alpha<\omega_2$}}, booktitle = {{Logic Colloquium '90 (Helsinki, 1990)}}, series = {Lecture Notes Logic}, volume = {2}, year = {1993}, pages = {281--289}, publisher = {Springer, Berlin}, mrnumber = {1279847}, mrclass = {03E35 (03E05 03E50)}, note = {\href{https://arxiv.org/abs/math/9308212}{arXiv: math/9308212}}, arxiv_number = {math/9308212} }