Sh:546
- Shelah, S. (2000). Was Sierpiński right? IV. J. Symbolic Logic, 65(3), 1031–1054. arXiv: math/9712282 DOI: 10.2307/2586687 MR: 1791363
-
Abstract:
We prove for any \mu=\mu^{<\mu}<\theta<\lambda,\lambda large enough (just strongly inaccessible Mahlo) the consistency of 2^\mu=\lambda\rightarrow [\theta]^2_3 and even 2^\mu=\lambda\rightarrow [\theta]^2_{\sigma,2} for \sigma<\mu. The new point is that possibly \theta>\mu^+. - Version 2012-10-24_10 (27p) published version (25p)
Bib entry
@article{Sh:546,
author = {Shelah, Saharon},
title = {{Was Sierpi\'nski right? IV}},
journal = {J. Symbolic Logic},
fjournal = {The Journal of Symbolic Logic},
volume = {65},
number = {3},
year = {2000},
pages = {1031--1054},
issn = {0022-4812},
mrnumber = {1791363},
mrclass = {03E02 (03E35)},
doi = {10.2307/2586687},
note = {\href{https://arxiv.org/abs/math/9712282}{arXiv: math/9712282}},
arxiv_number = {math/9712282}
}