Sh:622
- Shelah, S. (2001). Non-existence of universal members in classes of abelian groups. J. Group Theory, 4(2), 169–191. arXiv: math/9808139 DOI: 10.1515/jgth.2001.014 MR: 1812323
-
Abstract:
We prove that if \mu^+<\lambda=cf(\lambda)<\mu^{\aleph_0}, then there is no universal reduced torsion free abelian group. Similarly if \aleph_0<\lambda< 2^{\aleph_0}. We also prove that if 2^{\aleph_0}<\mu^+<\lambda=cf(\lambda)< \mu^{\aleph_0}, then there is no universal reduced separable abelian p-group in \lambda. (Note: both results fail if \lambda = \lambda^{\aleph_0} or if \lambda is strong limit, cf(\mu)=\aleph_0<\mu). - Version 2000-08-21_10 (29p) published version (23p)
Bib entry
@article{Sh:622, author = {Shelah, Saharon}, title = {{Non-existence of universal members in classes of abelian groups}}, journal = {J. Group Theory}, fjournal = {Journal of Group Theory}, volume = {4}, number = {2}, year = {2001}, pages = {169--191}, issn = {1433-5883}, mrnumber = {1812323}, mrclass = {20K27 (03E75 20A15)}, doi = {10.1515/jgth.2001.014}, note = {\href{https://arxiv.org/abs/math/9808139}{arXiv: math/9808139}}, arxiv_number = {math/9808139} }